

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]

Promuex Inc. (Canada) Global Professional Certificate.

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
Instruction plan for High-Performance Computing (HPC)
1. Learning Objectives
[bookmark: _GoBack]By the end of this course, learners will:
1. Understand HPC systems and performance metrics, including architectural components and scaling techniques.
2. Master parallel programming techniques with MPI, focusing on distributed memory and multi-core processing.
3. Learn GPU programming with CUDA, understanding GPU architectures, memory management, and optimization strategies.
4. Explore supercomputing applications to gain insight into how HPC systems solve computational challenges across various industries.

2. Course Structure
Module 1: Introduction to High-Performance Computing (HPC)
· Content:
· Fundamentals of HPC Systems
· Overview of HPC in Modern Applications: Exploring why HPC is essential in fields like scientific research, engineering, finance, and big data analytics.
· HPC Components: Detailed discussion of HPC system components—CPUs, GPUs, memory hierarchy, interconnects, storage, and their interactions.
· HPC Performance Metrics: Definitions and calculations of FLOPS, latency, bandwidth, memory hierarchy, and how these affect HPC efficiency.
· Activity: Compare different HPC systems (e.g., Google TPU, NVIDIA’s GPU clusters) by examining FLOPS, memory, and power consumption. Document findings on the trade-offs of different configurations.
· System Architecture in HPC
· Types of HPC Architectures: Examination of shared memory, distributed memory, and hybrid architectures. Understanding memory access methods and network topologies (e.g., mesh, torus).
· CPU vs. GPU Systems: Explore CPU designs for sequential processing vs. GPU designs for parallel processing.
· Supercomputer Clusters and Grids: Introduction to large HPC systems with case studies of famous supercomputers (e.g., Summit, Fugaku).
· Hands-On Exercise: Explore architecture designs of famous supercomputers, including their processor configurations, memory, and network setups.
· Scaling in HPC
· Understanding Scaling: Differentiate between weak and strong scaling, explaining their role in performance optimization.
· Amdahl’s Law and Gustafson’s Law: Calculations and theoretical limitations of parallel computing, with examples of scaling scenarios.
· Performance Optimization Techniques: Techniques to achieve better scaling, including load balancing, efficient resource utilization, and minimizing communication overhead.
· Activity: Calculate theoretical speedups for a sample workload, using Amdahl’s and Gustafson’s Laws.
· STAR Example:
· Situation: A research institute requires high computational throughput for climate modeling.
· Task: Set up an optimized HPC architecture to improve computational efficiency.
· Action: Configured a hybrid HPC system with CPU and GPU resources, optimized data storage, and implemented load balancing.
· Result: Reduced processing time for climate simulations by 40%, enabling more frequent model updates.
· Assessment: Analyze the design of a known supercomputer (e.g., Summit), discuss how its architecture supports high scalability, and identify key performance factors.
Module 2: Parallel Programming with MPI
· Content:
· Introduction to MPI
· MPI’s Role in Distributed Computing: How MPI enables communication in distributed memory systems.
· Basic MPI Setup: Steps to install and configure MPI, understanding process management and environment variables.
· MPI Essentials: Basics of MPI_Init, MPI_Comm_size, MPI_Comm_rank, and MPI_Finalize, with example code to understand process ranks.
· Hands-On Exercise: Write a simple MPI program that initializes processes and prints their ranks and sizes.
· Point-to-Point Communication
· MPI_Send and MPI_Recv: How to use MPI_Send and MPI_Recv for direct process-to-process communication, including blocking vs. non-blocking sends.
· Buffered Communication: Managing buffers for efficient communication, using MPI_Bsend and MPI_Buffer_attach.
· Hands-On Activity: Implement an MPI program to calculate a vector dot product, dividing work across multiple processes and aggregating results.
· Collective Communication
· Using Collective Functions: Introduction to MPI_Bcast, MPI_Gather, MPI_Scatter, MPI_Reduce, and their use in parallel processing.
· Example Programs: Code examples of collective functions, with explanations of each function’s purpose and parameters.
· Matrix Multiplication using Collective Communication: Use MPI_Scatter to distribute matrix rows and MPI_Gather to collect results.
· Hands-On Activity: Implement matrix multiplication using collective communication, demonstrating how MPI distributes tasks efficiently across nodes.
· Synchronization and Deadlock Management
· MPI Barriers and Synchronization: How to use MPI_Barrier to synchronize processes and manage workflows.
· Avoiding Deadlocks: Strategies for deadlock prevention, such as avoiding circular dependencies and analyzing communication patterns.
· Debugging Deadlocks: Practice with debugging tools, such as TotalView, to identify and resolve deadlocks in MPI code.
· Exercise: Write an MPI program with intentional deadlocks and resolve them by adjusting communication patterns and synchronization points.
· STAR Example:
· Situation: A large-scale simulation required coordination across thousands of nodes with minimal communication delays.
· Task: Use MPI to manage distributed computations, minimizing overhead and preventing deadlocks.
· Action: Implemented point-to-point and collective communication, designed synchronization points, and used non-blocking sends.
· Result: Improved performance efficiency, reducing computation time by 60%.
· Assessment: Develop an MPI program to compute matrix multiplication in parallel, report on performance improvement, and troubleshoot synchronization issues.
Module 3: GPU Programming with CUDA
· Content:
· GPU Architecture and CUDA Fundamentals
· Overview of GPU Design: Understanding cores, threads, blocks, and grids in a GPU; comparison of CPU and GPU parallelism.
· Introduction to CUDA: Overview of CUDA architecture, kernel functions, and memory hierarchy.
· Hands-On: Set up a CUDA environment and write a simple CUDA program that initializes data on the device and copies it back to the host.
· CUDA Programming Essentials
· Writing Basic CUDA Kernels: Understanding kernel functions, including syntax, grid and block dimensions, and execution flow.
· Memory Management: Detailed exploration of global, shared, constant, and local memory, with best practices for data transfer.
· Optimizing Memory Access: Introduction to memory coalescing, minimizing bank conflicts, and managing data locality.
· Hands-On Activity: Write a CUDA program that performs vector addition and optimize it for memory coalescing.
· Advanced CUDA Techniques and Optimization
· Shared Memory Utilization: Use shared memory within CUDA blocks for faster access, understanding bank conflicts and how to avoid them.
· Divergent Warps and Execution: Identifying and minimizing warp divergence to improve parallel efficiency.
· CUDA Streams for Overlapping Computation and Memory Transfer: Techniques to increase efficiency by overlapping computation with memory transfer.
· Case Study: Implement and optimize matrix multiplication on a GPU, experimenting with different block sizes, memory optimizations, and shared memory use.
· CUDA Profiling and Debugging
· Using NVIDIA Nsight for Profiling: Profiling CUDA programs to identify bottlenecks, using Nsight tools for code analysis.
· Debugging CUDA Code: Common debugging strategies, including memory leak detection, handling kernel errors, and debugging data transfer issues.
· Hands-On Exercise: Profile and optimize a CUDA program for matrix multiplication, addressing memory bottlenecks and kernel inefficiencies.
· STAR Example:
· Situation: A data science team requires high-speed data preprocessing for a machine learning pipeline.
· Task: Accelerate data transformations with CUDA programming, optimizing kernel execution and memory management.
· Action: Developed CUDA kernels, minimized memory latency, and profiled the program for efficient data throughput.
· Result: Reduced data preprocessing time by 80%, allowing faster model iterations.
· Assessment: Develop a CUDA-based program for matrix multiplication, analyze memory access patterns, optimize the code, and present a report on performance improvements.
Module 4: Supercomputing Applications
· Content:
· Scientific Computing with HPC
· HPC in Climate Modeling, Genomics, and Astrophysics: Case studies on large-scale scientific applications of HPC.
· Simulation of Molecular Dynamics: Example of how HPC simulates complex molecular interactions in biology and chemistry.
· Case Study: Run a molecular dynamics simulation on an HPC system, analyze scaling performance and compute requirements.
· Machine Learning and Artificial Intelligence on Supercomputers
· Deep Learning on HPC: Techniques for training machine learning models on HPC, using distributed deep learning frameworks.
· Data Parallelism and Model Parallelism: How large datasets and models are split across HPC resources.
· Activity: Set up a distributed training run on a simulated HPC system, comparing speedups with varying resource configurations.
· Real-World Supercomputing Projects
· Human Genome Project and Climate Prediction Models: Review of supercomputing’s role in landmark projects.
· Ethical and Environmental Impacts: Discussion of power consumption, resource allocation, and ethical implications of HPC usage.
· Hands-On Project: Review a recent supercomputing application, document its resource needs, challenges, and results achieved.
· Future of HPC: Quantum and Exascale Computing
· Quantum Computing in HPC: Overview of hybrid HPC-quantum systems and quantum’s potential in computational chemistry and cryptography.
· Exascale Computing and Beyond: Future of HPC, exascale architectures, and the promise of advanced simulations and AI applications.
· Class Discussion: Debate on the societal impact and future applications of exascale and quantum computing.
· STAR Example:
· Situation: A genomics research project needed to analyze massive DNA datasets quickly.
· Task: Design an HPC solution to handle complex, data-intensive computations.
· Action: Configured a supercomputing environment, distributed workloads, and optimized storage access.
· Result: Enabled genome sequencing analysis in record time, advancing research efforts.
· Assessment: Research and present a report on a specific supercomputing project (e.g., climate modeling), discussing the HPC setup, challenges, and computational outcomes.

Promuex Inc. Canada (https://promuex.ca/)

image1.png

image2.png

